Redação do Site Inovação Tecnológica - 18/04/2011
Teletransporte real
Se o experimento mental do gato de Schrodinger já não fosse estranho o suficiente, agora cientistas conseguiram complicar tudo um pouco mais.
A equipe do Dr. Noriyuki Lee e seus colegas da Universidade de Tóquio, no Japão, descobriram uma forma de teletransportar o gato de Schrodinger.
O teletransporte quântico já foi demonstrado com átomos e até mesmo com moléculas de DNA.
No teletransporte quântico, a informação (como o spin de uma partícula ou a polarização de um fóton) é transferida de um local para o outro, sem que ocorra o deslocamento por um meio físico.
Não há transferência de energia nem de matéria.
Gato de Schrodinger
Já o famoso gato morto/vivo foi idealizado por Erwin Schrodinger para explicar o fenômeno quântico da superposição, em que uma partícula fica em dois estados simultaneamente, somente se decidindo entre um deles - ou colapsando, como dizem os físicos - quando se tenta medir esse estado.
Schrodinger explicou isto em termos de objetos em escala macro: um gato fechado em uma caixa contendo um frasco de veneno. O frasco estará aberto se uma partícula quântica estiver em um estado, e fechado se a partícula estiver em outro estado.
Em termos quânticos, o gato estará vivo e morto simultaneamente. Somente quando alguém abrir a caixa - o equivalente a medir o estado quântico da partícula - a partícula colapsará e conheceremos o real estado do gato - vivo ou morto.
Teletransporte do gato de Schrodinger
Os pesquisadores descobriram uma forma de teletransportar um quanta de luz, ou um fóton, que está em um estado de superposição, ou seja, no chamado estado do gato de Schrodinger.
A partícula quântica superposta é destruída em um local e integralmente reconstruída em outro local, sem perder nenhuma de suas sensíveis propriedades quânticas - ou seja, o gato de Schrodinger chega do outro lado no seu paradoxal estado de vivo/morto.
Os pesquisadores começaram construindo um estado de entrelaçamento, no qual duas partículas compartilham propriedades qualquer que seja a distância entre elas.
Em outro ponto, eles construíram o gato de Schrodinger, a partícula em superposição, que deveria ser teletransportada.
O funcionamento do sistema de teletransporte propriamente dito dificilmente poderia ser descrito em linguagem não-matemática - veja na imagem o aparato necessário para executá-lo.
O processo envolve uma sequência de passos que combinam múltiplos fenômenos quânticos, incluindo compressão e subtração de fótons, entrelaçamento e detecção homódina.
Limite da não-clonagem
Apesar da complexidade do processo e da fragilidade dos estados quânticos envolvidos, os cientistas conseguiram comprovar o teletransporte usando uma ferramenta matemática conhecida como Função de Wigner, que descreve o quão "quântico" um pulso de luz é.
Essa função apresenta valores negativos que funcionam como uma medição da qualidade do teletransporte. Esta qualidade é medida por um número, chamado fidelidade, que deve ser maior do que 2/3 em uma operação de teletransporte feita com sucesso.
Esse valor de 2/3 é o chamado limite da não-clonagem, que garante que não existe mais nenhuma cópia da partícula quântica na origem - o estado do gato de Schrodinger deve ser destruído em um lugar para que ele reapareça em outro.
Ou seja, a partícula superposta de fato foi destruída em um ponto e recriada exatamente igual em outro - ela foi realmente teletransportada.
Transferência instantânea de informação
O experimento demonstra um mecanismo que poderá ser usado para projetar computadores quânticos que serão capazes de transportar informações com precisão e com absoluta segurança - e instantaneamente.
Em vez de disparar os bits através de fibras ópticas, onde há sempre o risco de que eles sejam monitorados por bisbilhoteiros, esses bits poderão ser teletransportados diretamente para o destino.
O mecanismo também é de interesse para o processamento quântico - basta imaginar algo como um dado que sai de um núcleo de processamento diretamente para outro núcleo, ou o resultado de um cálculo que chega instantaneamente no ponto do circuito onde ele está sendo esperado para o próximo passo do algoritmo.
Luz sobre a luz
Do ponto de vista científico, o experimento demonstra o avanço obtido na manipulação dos objetos quânticos, há poucos anos vistos como meras abstrações.
E renova as esperanças de que os cientistas logo encontrem uma forma de representar graficamente os estados quânticos das partículas, para que tais estados possam ser visualizados diretamente.
Talvez então se conseguirá lançar alguma luz sobre o mistério da própria luz: a luz é uma onda, uma partícula, as duas coisas, ou nenhuma das duas coisas?