Com informações da Agência Fapesp - 28/11/2017
Confusão supercondutora
Por mais de 65 anos, um composto de nióbio e boro, chamado monoboreto de nióbio (NbB), foi considerado um exemplo clássico de um material supercondutor, um material no qual a corrente elétrica flui livremente, com resistência virtualmente zero.
Mas esse "conhecimento", registrado nos manuais de física da matéria condensada e em inúmeros artigos científicos especializados, foi agora contestado por pesquisadores das universidades de São Paulo (USP) e Estadual de San Diego (EUA).
Os físicos descobriram que a supercondutividade detectada no material não é produzida pelo próprio monoboreto de nióbio (NbB), mas por filamentos de nióbio quase puro que margeiam os grãos microscópios do material.
"Sabemos que o elemento nióbio (Nb), sozinho, apresenta supercondutividade quando resfriado a temperaturas muito baixas, da ordem de 9,2 Kelvin (K). Agora, descobrimos que isso não ocorre com o monoboreto de nióbio (NbB) propriamente dito. Ocorre que, nas amostras de NbB, existe uma grande fração volumétrica de NbB, mas também uma pequena quantidade de Nb quase puro. São duas fases cristalinas distintas que coexistem nos materiais estudados. É essa fase minoritária, composta por aproximadamente 98% de nióbio e 2% de boro, que se comporta como supercondutora," explica o professor Renato de Figueiredo Jardim.
Nióbio puro
Os pesquisadores observaram que, mesmo ocorrendo em uma pequena fração volumétrica, a fase minoritária (Nb0,98B0,02) é supercondutora e forma uma rede tridimensional através da qual a corrente elétrica pode transitar de uma extremidade a outra do material.
É muito provável que essa característica tenha confundido os descobridores originais da supercondutividade no NbB, levando-os a atribuir a supercondutividade abaixo de aproximadamente 9 Kelvin a esse composto.
"Identificamos claramente essa estrutura reticular por meio da microscopia eletrônica de varredura. Essa evidência visual foi, por assim dizer, uma prova qualitativa da propriedade. Mas não podíamos sustentar a nossa hipótese apenas neste ponto. Era preciso ir adiante, buscando também uma prova quantitativa, e foi isso que fizemos, aplicando um modelo termodinâmico aos dados tomados nos materiais estudados. Por meio dele, obtivemos então a comprovação procurada," explicou Jardim.
Segundo o pesquisador, não há, atualmente, expectativa de aplicação tecnológica para o monoboreto de nióbio. "Mas existe um 'primo' dele, o diboreto de magnésio (MgB2), que passou a despertar grande interesse desde o início da década passada. Pode ser que nossa pesquisa venha contribuir para sua aplicação tecnológica", disse.
Supercondutividade e diamagnetismo
Do ponto de vista macroscópico, a supercondutividade é uma propriedade exibida por certos materiais que, abaixo de uma dada temperatura, passam a conduzir corrente elétrica sem nenhuma perda de energia, isto é, sem resistência elétrica.
"Concomitantemente a essa propriedade macroscópica existe outra propriedade, também macroscópica, que é o chamado 'diamagnetismo perfeito'," disse Jardim. Essa segunda propriedade faz com que um supercondutor, na presença de um campo magnético, expulse todo o fluxo magnético do seu interior.
O diamagnetismo está presente em todos os materiais. Porém, é muitas vezes tão fraco que sua manifestação fica encoberta pela presença de outras respostas magnéticas mais robustas, como o ferromagnetismo - que faz o material ser atraído pelo campo magnético externo - e o paramagnetismo - que faz os dipolos magnéticos atômicos se alinharem paralelamente ao campo magnético externo.
Quando a resposta diamagnética é suficientemente forte, como ocorre nos supercondutores, a repulsão provocada pelo campo magnético pode fazer o material levitar, um fenômeno explorado por alguns trens de alta velocidade.