Redação do Site Inovação Tecnológica - 13/05/2019
Bioimpressão
O corante amarelo de alimentos número 5 - um aditivo alimentar largamente usado pela indústria - revelou-se o ingrediente secreto para viabilizar a impressão 3D de biomateriais, dotados de redes complexas fisicamente emaranhadas, que caracterizam os tecidos biológicos, como a vasculatura, por exemplo.
Os tecidos dos órgãos movimentam fluidos e trocam materiais através de redes vasculares distintas, embora biofísica e bioquimicamente conectadas. Com o advento da impressão 3D, os pesquisadores logo se deram conta da possibilidade de usar essa tecnologia para construir órgãos artificiais. Mas reproduzir essa vasculatura em materiais biocompatíveis utilizados para o cultivo de tecidos tem sido um desafio.
Uma técnica que está sendo desenvolvida para criar estruturas artificiais capazes de imitar a complexa arquitetura vascular dos tecidos biológicos, como as encontradas no interior dos pulmões, é conhecida como estereolitografia de projeção.
A técnica usa luz projetada e resinas fotorreativas para criar objetos sólidos. Os aditivos fotoabsorventes podem ser usados para impedir a fotopolimerização indesejável fora da região alvo, para assegurar resolução suficiente para a criação de arquiteturas complexas.
Ocorre que as substâncias químicas disponíveis para isso são reconhecidamente cancerígenas e genotóxicas, ou seja, totalmente inadequadas para biomanufatura.
Fotoabsorvente
Bagrat Grigoryan e colegas da Universidade Rice, nos EUA, descobriram agora que corantes alimentares naturais e sintéticos amplamente utilizados podem ser usados como potentes fotoabsorventes na produção de redes vasculares intrincadas e funcionais dentro de hidrogéis, rompendo com a grande limitação prática da estereolitografia de projeção.
O corante alimentar tartrazina - ou amarelo #5 - um corante alimentar comum encontrado em uma variedade de salgadinhos e bebidas, funciona como um aditivo bloqueador de luz para criar rapidamente elaborados hidrogéis multivasculares.
A equipe demonstrou as capacidades funcionais desses materiais recriando processos biológicos, como a oxigenação das células sanguíneas no pulmão, por exemplo. Além disso, eles otimizaram um tecido hepático produzido por bioengenharia e transplantaram-no com sucesso em um modelo de lesão hepática crônica em camundongos para destacar o potencial de translação do método para aplicações práticas na área de saúde.
Impressão 3D de tecidos biológicos
Grigoryan está disponibilizando a nova tecnologia de bioimpressão em sistema de código aberto - ele a chama de "aparelho de estereolitografia para engenharia de tecidos", ou SLATE, na sigla em inglês.
O sistema usa a manufatura aditiva para fazer hidrogéis macios uma camada por vez, com um nível de detalhamento suficiente para imitar os tecidos biológicos reais.
As camadas são impressas a partir de uma solução líquida de pré-hidrogel que se torna sólida quando exposta à luz azul. Um projetor de luz digital lança luz de baixo para cima, mostrando fatias 2D sequenciais da estrutura em alta resolução, com tamanhos de píxeis variando de 10 a 50 micrômetros.
Com cada camada solidificada por sua vez, um braço suspenso eleva o gel 3D em crescimento apenas o suficiente para expor o líquido à próxima imagem do projetor. Os corantes alimentares absorvem a luz azul, confinando a solidificação a uma camada muito fina. Desta forma, o sistema pode produzir géis macios e biocompatíveis, à base de água, e com arquitetura interna intrincada, em questão de minutos.