Logotipo do Site Inovação Tecnológica





Eletrônica

Brasileiros controlam interações da luz que atrapalham chips fotônicos

Com informações da Agência Fapesp - 27/07/2016

Brasileiros controlam interações da luz que atrapalham chips fotônicos
Nas figuras à esquerda, nanofio de silício com diâmetro menor do que o comprimento de onda da luz. Na figura da direita, a luz está confinada no interior do nanofio.
[Imagem: O. Florez/P. Dainese/Unicamp]

Chips fotônicos

Físicos brasileiros conseguiram um avanço importante no controle da interação entre a luz e as vibrações "mecânicas" no interior dos materiais, um passo importante para o desenvolvimento de chips que integram a eletrônica com a fotônica, além de sensores ópticos e outros dispositivos.

O desenvolvimento dessa nova tecnologia - que promete aumento de velocidade e redução no consumo de energia dos aparelhos - depende, contudo, do avanço no conhecimento sobre a forma como a luz interage com a matéria - os componentes eletrônicos e fotônicos - e como é possível controlar essa interação.

Um dos desafios é fazer com que a luz possa viajar sem ser importunada pelas vibrações naturais, ou induzidas por ela própria, no interior do material usado para fabricar os componentes - são essas vibrações, atômicas, acústicas etc, que os físicos chamam de mecânicas.

A equipe brasileira descobriu agora que é possível cancelar essa interferência.

"A ideia é que, em um futuro breve, os chips tenham não só elétrons, como também fótons, que seriam guiados por nanofios de silício equivalentes às fibras ópticas," explica o professor Paulo Dainese, da Unicamp.

Ondas vibracionais

Nesses nanofios de silício citados pelo pesquisador, a luz fica muito mais comprimida do que nas fibras ópticas convencionais, o que significa que ela passa a ser afetada pelas ondas geradas pela interação entre os fótons e as partículas e quasipartículas do material, como os fônons, ondas vibracionais envolvidas na propagação do calor e dos sons.

Essas vibrações mecânicas alteram a elasticidade do interior do material, que se expande e retrai sucessivamente, e de sua superfície, que se move de acordo com as vibrações, alterando a forma geométrica do componente. Os dois efeitos, chamados respectivamente de efeito fotoelástico e efeito de movimento da superfície, ocorrem concomitantemente e alteram a propagação da luz pelo componente fotônico.

Anulando as vibrações

O que a equipe brasileira descobriu é que o efeito das vibrações de superfície na propagação da luz no nanomaterial não apenas é importante e comparável ao das vibrações no interior do material, mas também que, se forem controlados, ambos podem se anular mutuamente.

Dessa forma o novo efeito, que batizaram de "autocancelamento do espalhamento Brillouin", permite "apagar" a interação entre a luz e os fônons acústicos.

"Mostramos que, se a interação entre a luz e as ondas elásticas for minuciosamente controlada, é possível que, mesmo na presença de vibrações de altíssimas frequências, a luz viaje através do nanofio sem sofrer nenhuma perturbação. Isso abre a perspectiva de desenvolver, no futuro, chips que integram eletrônica e fotônica, ou mesmo sensores ópticos com mais liberdade de engenharia," avaliou Dainese.

Bibliografia:

Artigo: Brillouin scattering self-cancellation
Autores: O. Florez, P. F. Jarschel, Y. A. V. Espinel, C. M. B. Cordeiro, T. P. Mayer Alegre, G. S. Wiederhecker, P. Dainese
Revista: Nature Communications
Vol.: 7, Article number: 11759
DOI: 10.1038/ncomms11759
Seguir Site Inovação Tecnológica no Google Notícias





Outras notícias sobre:
  • Fotônica
  • Semicondutores
  • Transistores
  • Computação Quântica

Mais tópicos